skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Guanqiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fairness and robustness are two important goals in the design of modern distributed learning systems. Despite a few prior works attempting to achieve both fairness and robustness, some key aspects of this direction remain underexplored. In this paper, we try to answer three largely unnoticed and unaddressed questions that are of paramount significance to this topic: (i) What makes jointly satisfying fairness and robustness difficult? (ii) Is it possible to establish theoretical guarantee for the dual property of fairness and robustness? (iii) How much does fairness have to sacrifice at the expense of robustness being incorporated into the system? To address these questions, we first identify data heterogeneity as the key difficulty of combining fairness and robustness. Accordingly, we propose a fair and robust framework called H-nobs which can offer certified fairness and robustness through the adoption of two key components, a fairness-promoting objective function and a simple robust aggregation scheme called norm-based screening (NBS). We explain in detail why NBS is the suitable scheme in our algorithm in contrast to other robust aggregation measures. In addition, we derive three convergence theorems for H-nobs in cases of the learning model being nonconvex, convex, and strongly convex respectively, which provide theoretical guarantees for both fairness and robustness. Further, we empirically investigate the influence of the robust mechanism (NBS) on the fairness performance of H-nobs, the very first attempt of such exploration. 
    more » « less
  2. null (Ed.)
    The problem of recovering heavy components of a high-dimensional vector from compressed data is of great interest in broad applications, such as feature extraction under scarce computing memory and distributed learning under limited bandwidth. Recently, a compression algorithm called count sketch has gained wide popularity to recover heavy components in various fields. In this paper, we carefully analyze count sketch and illustrate that its default recovery method, namely median filtering, has a distinct error pattern of reporting false positives. To counteract this error pattern, we propose a new scheme called zero checking which adopts a two-step recovery approach to improve the probability of detecting false positives. Our proposed technique builds on rigorous error analysis, which enables us to optimize the selection of a key design parameter for maximum performance gain. The empirical results show that our scheme achieves better recovery accuracy than median filtering and requires less samples to accurately recover heavy components. 
    more » « less